ساخت ترانسفور ماتور قدرت خشک

ساخت ترانسفور ماتور قدرت خشک

در ژوئیه 1999، شرکت ABB، یک ترانسفور ماتور فشار قوی خشک به نام “Dryformer “ ساخته است که نیازی به روغن جهت خنک شدن بار به عنوان دی الکتریک ندارد.در این ترانسفورماتور به جای استفاده از هادیهای مسی با عایق کاغذی از کابل پلیمری خشک با هادی سیلندری استفاده می شود.تکنولوژی کابل  استفاده شده در این ترانسفورماتور قبلاً در ساخت یک ژنراترو فشار قوی به نام "Power Former"  در شرکتABB  به کار گرفته شده است. نخستین نمونه از این ترانسفورماتور اکنون در نیروگاه هیدروالکترولیک “Lotte fors” واقع در مرکز سوئد نصب شده که انتظار می رود به دلیل نیاز روزافزون صنعت به ترانسفورماتور هایی که از   ایمنی بیشتری برخوردار باشند و با محیط زیست نیز سازگاری بیشتری داشته باشند، با استقبال فراوانی روبرو گردد.

ایده ساخت ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسی، طراحی و ساخت این   ترانسفورماتور از بهار سال 1996 در شرکت ABB  شروع شد. ABB در این پروژه از همکاری چند شرکت خدماتی برق از جمله  Birka Kraft و Stora Enso  نیز بر خوردار بوده است.

  تکنولوژی

ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یکصد ساله ترانسفورماتورها، یک انقلاب محسوب    می شود. ایده استفاده از کابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق کاغذی از ذهن یک محقق ABB در سوئد به نام پرفسور  “Mats lijon” تراوش کرده است.

تکنولوژی استفاده از کابل به جای هادیهای مسی دارای عایق کاغذی، نخستین بار در سال 1998 در یک ژنراتور فشار قوی به نام  “ Power Former” ساخت ABB به کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادیهای شمشی ( مستطیلی ) در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است. همانطور که از معادلات ماکسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الکتریکی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت که برق را با سطح ولتاژ شبکه تولید کند بطوریکه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان 30 در صد کاهش  می یابد.

در یک کابل پلیمری فشار قوی، میدان الکتریکی در داخل کابل باقی می ماند و سطح کابل دارای پتانسیل زمین  می باشد.در عین حال میدان مغناطیسی لازم برای کار ترانسفورماتور تحت تاثیر عایق کابل قرار نمی گیرد.در یک ترانسفورماتور خشک، استفاده از تکنولوژی کابل، امکانات تازه ای برای بهینه کردن طراحی میدان های الکتریکی و مغناطیسی، نیروهای مکانیکی و تنش های گرمایی فراهم کرده است.

در فرایند تحقیقات و ساخت ترانسفورماتور خشک در ABB، در مرحله نخست یک ترانسفورماتور  آزمایشی تکفاز با ظرفیت 10 مگا ولت آمپر طراحی و ساخته شد و در Ludivica   در سوئد آزمایش گردید. “ Dry former” اکنون در سطح ولتاژ های از 36 تا 145 کیلو ولت و ظرفیت تا 150 مگا ولت آمپر موجود است.

  نیروگاه مدرن Lotte fors

ترانسفورماتور خشک نصب شده در Lotte fors که بصورت یک ترانسفورماتور – ژنراتور افزاینده عمل می کند ، دارای ظرفیت 20 مگا ولت امپر بوده و با ولتاژ 140 کیلو ولت کار می کند. این واحد در ژانویه سال 2000 راه اندازی گردید. اگر چه نیروگاه Lotte fors نیروگاه کوچکی با قدرت 13 مگا وات بوده و در قلب جنگلی در مرکز سوئد قرار دارد اما به دلیل  نوسازی مستمر، نیروگاه بسیار مدرنی شده است. در دهه 80 میلادی ، توربین های مدرن قابل کنترل از راه دور در ان نصب شد و در سال 1996، کل سیستم کنترل آن نوسازی گردید. این نیروگاه اکنون کاملاً اتوماتیک بوده و از طریق ماهواره کنترل می شود.

 

ویژگیهای ترانسفورماتور خشک

ترانسفورماتور خشک دارای ویژگیهای منحصر بفردی است از جمله:

1-    به روغن برای خنک شده با به عنوان عایق الکتریکی نیاز ندارد.

2-  سازگاری این نوع ترانسفورماتور با طبیعت و محیط زیست یکی  از مهمترین ویژگی های آن است. به دلیل عدم وجود روغن، خطر آلودگی خاک و منابع آب زیر زمینی و همچنین احتراق و  خطر آتش سورزی کم میشود.

3-   با حذف روغن و کنترل میدانهای الکتریکی که در نتیجه آن خطر ترانسفور ماتور از نظر ایمنی افراد ومحیط زیست کاهش می یابد، امکانات تازه ای از نظر محل نصب ترانسفورماتور فراهم میشود.به این ترتیب  امکانات نصب ترانسفورماتور خشک در نقا شهری و جاهایی که از نظر زیست محیطی حساس هستند،  فراهم میشود.

4-  در ترانسفورماتور خشک به جای بوشینگ چینی در قسمتهای انتهایی از عایق سیسیکن را بر استفاده میشود.  به این ترتیب خطر ترک خوردن چینی بوشینگ و نشت بخار روغن از بین میرود.

5-  کاهش مواد قابل اشتعال، نیاز به تجهیزات گسترده آتش نشانی کاهش میدهد. بنابراین از این دستگاهها در محیط های سر پوشیده و نواحی سرپوشیده شهری نیز می توان استفاده کرد.

6-   با حذف روغن در ترانسفورماتور خشک، نیاز به تانک های روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن کاملاً از بین میرود.بنابراین کار نصب آسانتر شده و تنها شامل اتصال کابلها و نصب تجهیزات خنک کننده خواهد بود.

7-  از دیگر ویژگی های ترانسفورماتور خشک، کاهش تلفات الکتریکی است. یکی از راههای کاهش تلفات و بهینه کردن طراحی ترانسفورماتور، نزدیک کردن ترانسفورماتور به محل مصرف انرژی تا حد ممکن است تا از مزایای انتقال نیرو به قدر کافی بهره برداری شود. با بکار گیری ترانسفورماتور خشک این امر امکان پذیر است .

8-   اگر در پست، مشکل برق پیش آید، خطری متوجه عایق ترانسفورماتور نمی شود. زیرا منبع اصلی گرما یعنی تلفات در آن تولید نمی شود.بعلاوه چون هوا واسطه خنک شدن است و هوا هم مرتب تعویض و جابجا می شود، مشکلی از بابت خنک شدن ترانسفورماتور بروز نمی کند.

 

نخستین تجربه نصب ترانسفررماتور خشک

ترانسفورماتورخشک برای اولین بار در اواخر سال 1999 در Lotte fors  سوئد به آسانی نصب شده و از آن هنگام تاکنون به خوبی کار کرده است. در آینده ای  نزدیک دومین واحد ترانسفورماتور خشک ساخت ABB (Dry former ) در یک نیروگاه هیدروالکتریک در سوئد نصب می شود.

 

چشم انداز آینده تکنولوژی ترانسفورماتور خشک

شرکت ABB در حال توسعه ترانسفورماتور خشک   Dryformer است. چند سال اول از آن در مراکز شهری و آن دسته از نواحی که از نظر محیط زیست حساس هستند، بهره برداری می شود. تحقیقات فنی دیگری نیز در زمینه تپ چنجر خشک، بهبود ترمینال های کابل و سیستم های خنک کن در حال انجام است. در حال حاضر مهمترین کار ABB، توسعه و سازگار کردن Dryformer با نیاز مصرف کنندگان برای کار در شبکه و ایفای نقش مورد انتظار در پست هاست.

منبع :

       1 - مجله T&D – - آگوست 1999

       2-   مجله -PEI   -   مه 2000

       3- http://www.abb.com 

 

سیستم نمایش و مدیریت  ترانسفورماتورهاTMMS

سیستم TMMS   (Trans former Monitoring Management System)    فارادی یک سیستم نمایش و مدیریت ترانسفورماتور است.

سیستم ‍TMMS بر اساس جمع آوری اطلاعات بحرانی بهره برداری ترانسفورماتور و تجزیه و تحلیل آنها عمل می نماید.

سیستم TMMS با تجزیه و تحلیل اطلاعات قادر خواهد بود که ضمن تفسیر عملکرد  ترانسفورماتور عیبهای آن را تشخیص داده و اطلاعات لازم برای تصمیم گیری را در اختیار بهره بردار قرار دهد.

 

اطلاعات بهره برداری که برای فرآیند نمایش و مدیریت ترانسفور ماتور ها مورد نیاز بوده و توسط سنسورهای مخصوص جمع آوری میگردند بشرح زیر می باشند.

·                      - گازهای موجود در روغن ترانسفورماتور همراه با ئیدران

·                      - آب موجود در روغن ترانسفور ماتور همراه با Acquaoil 300

·                      - جریان بار ترانسفورماتور

·                      - دمای نقاط مختلف ترانسفورماتور

·                      - وضعیت تپ چنچر ترانسفورماتور

·                      - سیستم خنک کنندگی ترانسفورماتور

اطلاعات بهره بردای فوق جمع آوری شده و بهمراه سایر اطلاعات موجود بطور مستمر  تجزیه و تحلیل شده تا بتوانند اطلاعات زیر را درباره وضعیت بهره برداری ترانسفورماتور تهیه نمایند.

·                      - شرایط عمومی و کلی ترانسفورماتور

·                      - ظرفیت بارگیری ترانسفورماتور

·                      - میل و شدت تولید گاز و حباب در داخل روغن ترانسفورماتور

·                      - ملزومات نگهداری ترانسفورماتور

سیستم TMMS  فارادی را میتوان برای ترانسفورماتورهای موجود بکار برد و همچنین میتوان آنرا در ساختمان ترانسفورماتورهای جدید طراحی و نصب نمود.

ارتقاء سیستم TMMS فارادی با افزودن سنسورهای اضافی میتواند باعث ارتقاء عملکرد آن برای موارد زیر گردد.

·                      - حداکثر نمودن ظرفیت بارگذاری ترانسفورماتور برای بهره برداری اقتصادی و  بهینه

·                      - تشخیص عیب و توصیه راه حل در ترانسفورماتور ها

·                      - مدیریت عمر ترانسفورماتور و افزایش آن

·          - تکمیل و توسعه فرایند و عملیات مدیریت ترانسفورماتور ها با کمک اطلاعات اضافی تهیه شده در زمان حقیقی

  ·          -کاهش و حذف خروجی ترانسفورماتورها بصورت برنامه ریزی شده و یا ناشی از خطا

·                      - آشکار سازی علائم اولیه پیدایش خطا در ترانسفورماتورها

·                      - نمایش مراحل تکامل و شکل گیری شرایط پیدایش خطا

 

  مرجع:     سایت خبری شرکت جنرال الکتریک ((GE

آدرس: www.syprotec.com          

 

ساخت نوعی جدید از ترانسفورماتورها

شرکت ABB نوع جدیدی از ترانسفورماتورهای تقویت جریان موسوم به بوسترفورمر عرضه کرده است که در سیستم تغذیه راه آهن استفاده می گردد . در این نوع تراسفورماتورها از روغن استفاده نشده و سیستم عایقی ساده‌ای به کار رفته است . استفاده از بوسترفورمر از لحاظ اقتصادی به صرفه بوده و برای محیط زیست نیز مضرات کمتری دارد.

تکنولوژی به کار رفته در بوسترفورمر، همانند Powerformer ها و Dryformer ها ( ترانسفورماتورهای خشک ) مبتنی بر استفاده از کابلها می باشد. این ترانسفورماتورها از یک کابل فشار قوی تشکیل شده که به صورت یک سیم پیچ به دور یک هسته آهنی پیچانده شده است.

در بوسترفورمر از روغن استفاده نشده است و به این ترتیب نیاز به بازرسی مداوم روغن ( دمای روغن، اندازه‌گیری و تجزیه گاز متصاعد شده از روغن و … ) از بین رفته و هزینه‌های سرویس ونگهداری پایین آمده است. به علت زمین شدنِ کل ترانسفورماتور، ضریب ایمنی این نوع ترانسفورماتور بسیار بالاست. بوسترفورمر به علت استفاده از تجهیزات اتصال دهنده استاندارد، از ضریب اطمینان بالایی نیز برخوردار است .

ترانسفورماتورهای تقویت جریان با فواصل 5 کیلومتر از یکدیگر، در مسیر خطوط راه آهن و بر روی فیدر نصب می‌گردند. این نوع ترانسفورماتورها را می‌توان هم بر روی تیر و هم بر روی زمین نصب کرد. از بوستر فورمر ممکن است در کشورهای زیادی برای منابع تغذیه مختلف استفاده گردد . اکنون تعدادی از این نوع تراسفورماتورها برای منابع تغذیه راه آهن کشورهای اروپای شمالی در حال ساختند.

 

منبع : سایت  ABB

آدرس :  http://www.abb.com

 

 

 ترانسفورماتورهای سازگار با هارمونیک

 ترانسفورماتورهای  مقاوم عامل     K

هارمونیک های تولید شده توسط بارهای غیر خطی می توانند مشکلات حرارتی و گرمائی خطرناکی را در ترانسفورماتورهای توزیع استاندارد ایجاد نمایند . حتی اگر توان بار خیلی کمتر از مقدار نامی آن باشد ، هارمونیک ها می توانند باعث گرمای بیش از حد و صدمه دیدن ترانسفورماتورها شوند . جریان های هارمونیکی تلفات فوکو را بشدت افزایش می دهند . بهمین دلیل سازنده ها ، ترانسفورماتور های تنومندی  را ساخته اند تا اینکه بتوانند تلفات اضافی ناشی از هارمونیک ها را تحمل کنند . سازنده ها برای رعایت استاندارد یک روش سنجش ظرفیت، بنام عامل   Kرا ابداع کرده اند . در اساس عامل  K نشان دهنده مقدار افزایش در تلفات فوکو است . بنابراین ترانسفورماتور عامل  Kمی تواند باری به اندازه ظرفیت نامی ترانسفورماتور را تغذیه نماید مشروط براینکه عاملK بار غیر خطی تغذیه شده برابر با عامل K ترانسفورماتور باشد . مقادیر استاندارد عامل K برابر با 4 ، 9 ، 13 ، 20 ، 30 ، 40 ، 50 می باشند. این نوع ترانسفورماتورها عملا" هارمونیک را از بین نبرده تنها نسبت به آن مقاوم می باشند.

 

ترانسفورماتور HMT ( Harmonic Mitigating Transformer ) 

نوع دیگر از ترانسفورماتورهای سازگار با هارمونیک ترانسفورماتورهای HMT هستند که ازصاف شدن بالای موج ولتاژ بواسطه بریده شدن آن جلوگیری می کند. HMT طوری ساخته شده است که اعوجاج ولتاژ سیستم واثرات حرارتی ناشی از جریان های هارمونیک را کاهش می دهد. HMT این کار را از طریق حذف فلوها و جریان های هارمونیکی ایجاد شده توسط بار در سیم پیچی های ترانسفورماتور انجام می دهد.

چنانچه شبکه های توزیع نیروی برق مجهز به ترانسفورماتورهایHMT  گردند می توانند همه نوع بارهای غیر خطی   ( با هر درجه از غیر خطی بودن ) را بدون اینکه پیامدهای منفی داشته باشند، تغذیه نمایند. بهمین دلیل در اماکنی که بارهای غیر خطی زیاد وجود دارد از ترانسفورماتور HMT بصورت گسترده استفاده می شود .

 

مزایای ترانسفورماتورHMT  :

·         می توان از عبور جریان مؤلفه صفر هارمونیک ها ( شامل هارمونیک های سوم ، نهم و پانزدهم ) در سیم پیچی اولیه ، از طریق حذف فلوی آنها در سیم پیچی های ثانویه جلوگیری کرد .

·         ترانسفورماتورهای HMT با یک خروجی در دو مدل با شیفت فازی متفاوت ساخته می شوند. وقتی که هر دو مدل با هم بکار می روند می توانند جریان های هارمونیک پنجم، هفتم، هفدهم و نوزدهم را درقسمت جلوئی شبکه حذف کنند .

·         ترانسفورماتورهای HMT با دو خروجی می توانند مولفه متعادل جریان های هارمونیک  پنجم، هفتم ، هفدهم و نوزدهم را در داخل سیم پیچی های ثانویه حذف کنند .

·         ترانسفورماتورهای HMT با سه خروجی می توانند مولفه متعادل جریانهای هارمونیک پنجم، هفتم ، یازدهم و سیزدهم را در داخل سیم پیچی ثانویه حذف کنند .

·         کاهش جریان های هارمونیکی در سیم پیچی های اولیه HMT باعث کاهش افت ولتاژهای هارمونیکی و اعوجاج مربوطه می شود .

·                      کاهش تلفات توان بعلت کاهش جریان های هارمونیکی .

 

بعبارت دیگر ترانسفورماتورHMT باعث ایجاد اعوجاج ولتاژ خیلی کمتری در مقایسه با ترانسفورماتورهای معمولی یا ترانسفورماتور عامل K می شود .

 

 منبع : مجله Power Quality Advisor  - فوریه 2000

 

 آیا تانک ترانسفورماتورها باید تحت فشار قرار گیرند؟

از شرکت سرویس دهنده ترانسفورماتور ، DYNEX اغلب این پرسش می شود که آیا یک تانک روغن ترانسفورماتور باید تحت فشار باشد یا درحالت خلأ نگهداری شود و یا اصلا" چنین موضوعی اهمیت دارد؟

نشتی در اثر تلفات فشار (مثبت یا منفی) بوجود می آید. در یک ترانسفورماتور تحت فشار در صورت ایجاد نشتی احتمال اینکه روغن از تانک با فشار خارج گردد خیلی بیشتر می باشد. روغن ریزی حادثه ناخوشایندی می باشد زیرا روغن های بکاررفته آلوده کننده می باشند و گاهی سبب مشکلات زیست محیطی می گردند. وقتی تانک ترانسفور تحت فشار باشد کشیدن یک نمونه روغن راحتتر است و در اثر نشتی آلودگیها به داخل ترانسفورماتور کشیده نمی شوند.

اثرات فشارمنفی

اگر از یک تانک ترانسفورماتور که در خلأ نگهداری می شود یک نمونه روغن کشیده شود، چه اتفاقی خواهد افتاد؟

روغن نمونه معمولا" از کف تانک کشیده می شود (غیر از آسکارل ) هنگامی که شیر باز می شود ممکن است که هوا به داخل تانک کشیده شود. اگر هوا بوسیله رطوبت، گرد و غبار، یا ناخالصی ها آلوده باشد، روغن می تواند آلوده گردد حتی اگر برای فقط یک مدت زمان کوتاه باشد. همچنین این امکان را فراهم می آورد تا یک حباب هوا درون روغن حرکت کند و این می تواند بطور لحظه ای قدرت دی الکتریک متوسط بین دو نقطه در جایی که یک اختلاف پتانسیل بالا وجود دارد را ضعیف کند که در نتیجه آن ممکن است یک جرقه الکتریکی تولید گردد.

یک ترانسفورماتور که در فشار اتمسفر نگهداری شده بسیار خوب عمل می کند. در حقیقت، اگر ترانسفورماتور آب بندی شده باشد، فشار داخلی با درجه حرارت بالا و پایین می رود و این فقط به واسطه انبساط حرارتی گازهای داخلی ( هوا، نیتروژن یا هر آنچه داخل آن است ) ، روغن و خود تانک ترانس می باشد و دستگاه کاملا"بطور رضایت بخشی از همه جهت وبر اساس طول عمر مورد انتظار عمل خواهد کرد.

وضع نهایی مشخص شده بوسیله DYNEX نشان می دهد که یک فشار مثبت نسبتا" کم از 1 تا 2 پوند در هر اینچ مربع مطلوب است. در حالیکه این میزان فشار سبب صدمه دیدن گاسکت (واشر) و ایجاد نشتی نمی گردد . استخراج نمونه های روغن برای تجزیه های پریودیک معین جهت تشخیص علائم آغازین خطاهای داخلی بآسانی انجام می گیرد و بوسیله کنترل فشار علایم نشتی ها می تواند تشخیص داده شود. همچنین اگر چنانچه یک نشتی گسترش یابد، احتمال اینکه ناخالصیهایی از محیط اطراف به داخل وارد گردند کمتر است. در این حالت نشتی های روغن ترانسفورماتور می توانند برطرف گردند و این کار هزینه کمتری نسبت به تعویض یا تعمیر ترانسفورماتور دارد.

بررسی نشتی ها:

1-       گیج فشار را در اول هفته عملکرد ترانسفورماتور در طول روز بررسی کنید. اگر گیج فشار- خلأ در صفر بماند، نشان دهنده خطای آب بندی است. اگر ترانسفورماتور را نمی توان بی برق نمود. دقت کنید که به قسمتهای زنده آن مانند ترمینالهای بوشینگ و هادیهای آن نزدیک نشوید.

2-       نیتروژن یا هوای خشک را بطور آهسته در فشار پایین اضافه کنید تا گیج 5 PSI را نشان دهد. بوسیله یک برس، محلول آب صابون به کلیه قسمتهای بالای سطح مایع استعمال کنید. حبابهای کوچک محلهای نشتی را مشخص می نمایند.

3-       بعد از اینکه نشتی تعمیر شد، نیتروژن با هوای خشک باندازه کافی اضافه کنید تا فشار هوا به 0.5 PSI برسد ( دمای مایع بالا ). جهت بدست آوردن فشار نرمال در دماهای دیگر، می توان از منحنی زیر استفاده کرد.

 

 

منبع :     سایت خبری شرکت dynex

آدرس : http://www.dynex.com   

 

اضافه ولتاژهای رزونانس در ترانسفورماتورهای توزیع

نتیجه طبیعی استفاده صنایع از ترانسفورماتورهای توزیع با ظرفیتهای بالاتر، افزایش احتمال بروز اضافه ولتاژها در وضعیتهای مختلف روزانه است . برای تعیین پارامترهای سیستم که می توانند باعث ایجاد اضافه ولتاژهای فرورزونانس شدید گردند، آزمایشهای کاملی توسط موسسه DSTAR انجام گرفته است . آزمایشات مذکور بر روی تعدادی ترانسفورماتور توزیع و تحت شرایط کار واقعی انجام شده است . در طول این آزمایشات، صدها بار عملیات کلیدزنی بر روی ترانسفورماتورهای توزیع با ولتاژهای متفاوت و با سیم پیچ ستاره زمین شده و اولیه مثلث انجام گردید. این پروژه بطور کلی ثابت کرد که در ترانسفورماتورهای با ظرفیت بالا که امروزه توسط صنایع مختلف مورد استفاده قرار می گیرند، احتمال ایجاد اضافه ولتاژ فرورزونانسی بیشتر از ترانسفورماتورهای دهه گذشته می باشد.

بطور نمونه ، در آزمایشات انجام گرفته شده توسط DSTAR بر روی یک ترانسفورماتور معمولی با هسته سیلیکون – فولاد با ظرفیت 225 KVA  و ولتاژ  25 KV با اتصال  Y Y   ، یک اضافه ولتاژ با پیک 2.35 برابر پیک نامی ترانسفورماتور اندازه گیری شده است .

تحقیقات DSTAR ، برخی نظرات موجود در مورد اثرات پدیده اضافه ولتاژ را رد کرد. برای مثال بجای جریان تحریک هسته تلفات هسته ترانسفورماتور بهترین مشخصه برای شناسایی پدیده اضافه ولتاژ در ترانسفورماتور می باشد. نتایج تحقیقات انجام گرفته توسط این مرکز ، اخیرا" بعنوان مبحث جدید و با ارزشی از سوی IEEE منتشر شده است .

پروژه تحقیقاتی دیگری توسط موسسه DSTAR جهت تعیین تأثیر نصب برقگیر اکسید روی بر روی اضافه ولتاژهای فرورزونانس انجام گرفته است. این تحقیقات نشان داد که وقوع اضافه ولتاژهای فرورزونانس باعث خرابی سریع برقگیر GAPLESS نخواهد شد.

بدلیل وجود امپدانس خیلی بزرگ مدار فرورزونانس گرم شدن برقگیر به آهستگی صورت میگیرد. همچنین این تحقیقات نشان داد که برقگیرها می توانند بعنوان عامل موثری در کنترل اضافه ولتاژها در شرایط گوناگون باشند. دستورالعملهای مختلفی برای کاربرد برقگیرهای مختلف با توجه به شرایط بهره برداری وجود دارد که بیان می کند هر برقگیر چند دقیقه می تواند اضافه ولتاژ فرورزونانس را تحمل کند. این اضافه ولتاژ در زمان کلیدزنی ( سوئیچینگ ) ترانسفورماتورها رخ می دهد.

بانکهای ستاره – مثلث

کلیدزنی بانکهای ترانسفورماتور سه فاز هوایی با سیم پیچی Y –   بصورت فاز به فاز می تواند سبب ایجاد مشکلات اضافه ولتاژ و خرابی ترانسفورماتورها یا برقگیرها گردد. این موضوع در تحقیقات DSTAR بررسی گردید و نتایج بدست آمده مطالب مفیدی را در مورد کلیدزنی ، حفاظت اضافه ولتاژها و قابلیت برقگیرها در رفع این اضافه ولتاژها ارائه نمود. نتایج تحقیقات مذکور همچنین گونه دیگری از پدیده اضافه ولتاژ را که قبلا" گزارش نشده بود، کشف و معرفی نمود. این اضافه ولتاژ که دامنه زیادی دارد یک علت روشن برای خرابی خیلی از ترانسفورماتورها در این زمینه می باشد. یک نمونه از این نوع اضافه ولتاژ درشکل شماره (1) نشان داده شده است .

امواج طرف ثانویه

ترانسفورماتورهای تک فاز توزیع با سیم پیچی از نوع طراحیnon – interlaced   به همان اندازه که ممکن است بواسطه امواج صاعقه وارد شده از طریق نقطه خنثی در ثانویه صدمه ببینند به همان قدر نیز ممکن است از طریق امواج طرف اولیه در معرض خطر باشند. همانطور که در شکل ( 2 )  دیده می شود ولتاژ القاء شده در سیم پیچی طرف اولیه در مجموع کم است ولی تنش های لایه به لایه در میان سیم پیچی های ترانسفورماتور زیاد اتفاق می افتد. آزمایشات متعدد DSTAR و بررسی های تحلیلی انجام شده دستورالعمل و راهنمائیهائی را برای حداقل نمودن ریسک خرابی ترانسفورماتور در مواجه با این پدیده، تهیه نموده است.

شکل (1) : تغییرات اضافه ولتاژ

شکل (2)

منبع : مؤسسه DSTAR                                                                               

                                                                                آدرس : http://www.dstar.org 

 

افزایش طول عمر تراسفورماتور بوسیله مونیتورینگ صحیح و درک درست نتایج آن

پیش از این اطلاعات مربوط به وضعیت ترانسفورماتورهای  MVA 25 و بالاتر محدود به اطلاعات آلارم دمای بالای روغن ، نتایج آنالیزسالیانه گازهای حل شده در روغن (DGA ) و اطلاعات اندک دیگری برای ترانسفورماتورهای بزرگتر میگردد. امروزه فن آوری ، امکانات جدیدی را برای اندازه گیری سریع گازهای حل شده در روغن ترانسفورماتور و سایر پارامترهای بحرانی تقریبا" بطور همزمان ، فراهم آورده است .

هر یک از انواع خطاهای ترانسفورماتور ترکیب متفاوتی از گازها را تولید می کند . تقریبا" تمامی خطاها مقادیر مختلفی گاز هیدروژن تولید می کنند که چگونگی مونیتورینگ هیدروژن که اغلب بعنوان علامت اصلی هشدار دهنده است ، اساس انواع روشهای آنالیز گازهای محلول در روغن ترانسفورماتور می باشد .

سه نوع فن آوری اندازه گیری گاز محلول در روغن مورد استفاده قرارگرفته است :

    1)       فن آوری سنسور نیمه هادی که از یک تراشه سیلیکونی استفاده می کند . هنگامی که این سنسور در معرض گاز هیدروژن قرار می گیرد یک سیگنال الکتریکی تولید می کند .ویژگی پاسخ به هیدروژن در این فن آوری بسیار خوب است .

    2)        فن آوری پیل سوختی نیز در مونیتورینگ میزان هیدروژن در روغن ترانسفورماتور استفاده شده است . اکسیداسیون الکتروشیمیایی هیدروژن در الکترودهای آشکارساز ، یک جریان الکتریکی متناسب با مقدار هیدروژن تولید می کند . برای مولکولهای کوچکی مانند هیدروژن می توان گفت که 100 در صد گاز موجود در واکنش شرکت کرده و از آنها پاسخ دریافت می شود . سایر مولکولها مانند استیلن ، اتیلن و مونوکسیدکربن نیز می توانند در اکسیداسیون شرکت کرده و تولید سیگنال الکتریکی کنند . این سیگنال تولید شده بخشی از کل سیگنال الکتریکی خروجی است که نمی توان تشخیص داد سهم هر گاز درتولید سیگنال به چه میزان است .

    3)        طیف نگاری گاز ، سومین فن آوری استفاده شده در اندازه گیری گازهای محلول درروغن است . نمونه های گاز که یا از فضای بالای تانک روغن ترانسفورماتور گرفته شده و یا از روغن ترانسفورماتور بدست آمده است ، از لوله های بلند و نازکی عبور داده می شوند . اندازه گیری های انجام شده روی قابلیت هدایت گرمایی گازها ، سیگنالهایی تولید می کند که با تبدیل این سیگنالها می توان نوع گاز موجود در نمونه اصلی را تشخیص داد .

برای ارزیابی این سه فن آوری، دو ترانسفورماتور که دارای شرایط و نسبت تبدیل کاملا" یکسانی هستند را در نظر می گیریم. ابتدا یکی از آنها را تحت آزمایش تخلیه جزئی قرار می دهیم. در این حالت میزان هیدروژن 600 PPM  ، متان 80 PPM و مونوکسید کربن بدون تغییر است. فن آوری پیل سوختی و سنسور نیمه هادی نشان می دهند که چیزی تغییر کرده اما دقیقا" مشخص نیست که چه گازی در روغن حاصل شده است. روش طیف نگاری کاملا" میزان انواع گازها را نشان می دهد.

در مرحله بعد ترانسفورماتور دیگر تحت آزمایش خطای قوس قرار می گیرد. در این حالت هیدروژن 800 PPM و استیلن 200 PPM می باشد. در این حالت نیز روش پیل سوختی و سنسور نیمه هادی تنها به میزان گاز تولید شده اشاره دارند اما طیف نگاری به تفکیک میزان هر یک از گازهای تولید شده را ارائه می دهد.

نتایج نشان می دهد که بعضی از خطاها در یک مدت زمان طولانی ، مقدار کمی گاز تولید می کنند در صورتیکه سایر خطاها مقادیر قابل ملاحظه ای گاز در زمانی کوتاه تولید می کنند .

ارتباط دادن این داده ها با خطاهای ترانسفورماتور عامل مهمی در اتخاذ تصمیمی مناسب برای بهره برداری و نگهداری از ترانسفورماتورها است . برخی از آنها بیانگر این نکته هستند که قابلیت اطمینان بلندمدت ترانسفورماتور مناسب و یا بسیار نامناسب است و یا اینکه عمر مفید ترانسفورماتور به اتمام رسیده است . سایر مقادیر اندازه گیری شده ، نشان دهنده وقوع خطاهای جدی هستند که ممکن است نتایج ناگواری را در پی داشته باشد .

 

منبع : سایت خبری Pennnet

آدرس : http://www.pennnet.com 

 

* HTS آزمایش موفقیت آمیز ترانسفورماتورهای ابررسانایی

یک تیم تحقیقاتی صنعتی در آمریکا متشکل از مهندسین و دانشمندان که زیر نظر شرکت Waukesha Electric Systems  فعالیت می نمایند، در سال 1999 خبرتحول مهمی را در صنعت برق با انجام آزمایش موفقیت آمیز نوع جدیدی از ترانسفورماتورهای قدرت اعلام نمودند. ترانسفورماتورهای ابررسانایی جدید در مقایسه با ترانسفورماتورهای رایج، کوچک و سبک تر می باشند و دارای طول عمر بیشتری نیز هستند. در این نوع ترانسفورماتورها دیگر نیازی به هزاران گالن روغن جهت عایقی و خنک سازی نمی باشد و در نتیجه خطر ایجاد حریق و مسائل زیست محیطی را نخواهد داشت. در ابررساناها بعلت عدم وجود مقاومت اهمی در برابر جریان dc ، تلفات اهمی برابر با صفر است. لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات کل ترانسفورماتور، کاهش قابل ملاحظه ای خواهد یافت. تلاشهایی که جهت توسعه ترانسفورماتورهای ابررسانا انجام می گیرد صرفا" بخاطر مسائل اقتصادی و کاهش هزینه  نیست. یکی دیگر از دلایل طرح این مبحث این است که در مراکز پر تراکم شهری، رشد مصرف 2 درصدی (سالیانه ) به معنی نیاز به ارتقاء ظرفیت سیستم های موجود است. از طرفی بسیاری از پستهای توزیع بصورت Indoor  بوده و در کنار ساختمانها نصب شده اند. در این نوع پست ها همانند دیگر پستهای توزیع، از ترانسهای روغنی استفاده می شود که استفاده از روغن مشکلات و خطرات زیست محیطی و ایمنی مربوط به خود را دارد. در حالیکه در ترانسفورماتورهای ابررسانا، ماده خنک کننده نیتروژن است که خطری برای افراد و موجودات زنده ندارد. بعلاوه در این ترانسفورماتورها، خطر آتش سوزی نیز وجود ندارد. بهمین لحاظ خنک کننده مورد استفاده در ترانسفورماتورهای ابررسانا به هیچ عنوان قابل مقایسه با روغنهای قابل اشتعال و مواد شیمیایی شیمی همچون PCB نیست.

آزمایشات بر یک نوع از این ترانسفورماتور با ظرفیت 1 MVA امکان سنجی فنی و سایر مزایای آنرا به اثبات رسانده است. یکی از مزایای آن کاهش وزن ترانسفورماتور می باشد بطوریکه برای یک ترانسفورماتور 30 MVA وزن آن از 48 تن به 24 تن خواهد رسید.

دو تغییر مهم در طراحی ترانسفورماتور که منجر به طراحی و ساخت این نوع ترانسفورماتورهای جدید شده است، عبارتند از استفاده از مواد ابررسانایی دمای بالا (HTS) بجای سیم پیچ های رایج مسی و بکارگیری از یک سیستم کوچک خنک سازی بجای سیستم خنک کننده رایج ترانسفورماتورهای معمولی.

ترانسفورماتور HTS ، 30 MVA تقریبا" به 200 پوند (100 کیلوگرم ) ابررسانا نیاز خواهد داشت که هیچ گونه مقاومت الکتریکی ندارد و بنابراین هیچگونه حرارتی تولید نخواهدکرد،درحالیکه در ترانسفورماتورهای رایج، سیم پیچهای مسی که هزاران پوند وزن دارند منبع اصلی تولید گرما و ایجاد تلفات میباشند.فن آوری ترانسفورماتور HTS  از نظر استفاده از یک سیستم خنک کننده حلقه بسته جهت خنک سازی سیم پیچ های 

 ترانسفورماتور یکتا می باشد و قادر است که دمای سیم پیچ را تا 382 - درجه فارنهایت برساند.

ترانسفورماتور HTS آزمایشی 1 MVA به عنوان یک بستر آزمایشی مناسب برای ارزیابی نوآوریهای تازه ساخته شده است.شکل زیر یک نمونه از این نوع ترانسفورماتور را نشان می دهد.

                             

    شکل (1) 

همین تیم تحقیقاتی که بر روی ساخت و آزمایش ترانسفورماتور 1- MVA , HTS کار کرده اند، قرار است طراحی و آزمایش یک ترانسفورماتور آزمایشی آلفا 5 / 10 MVA را شروع نمایند.

پروژه ترانسفورماتور HTS در ایالت متحده آمریکا توسط چندین شرکت و سازمان دنبال می گردد. شرکت Waukesha Electric Systems ( WES ) رهبری ساخت اینگونه ترانسفورماتورها را در آمریکا به عهده دارد. این شرکت مسئول طراحی و ساخت هسته و تانک ترانسفورماتور HTS – 1MVA  بوده و همچنین مونتاژ و آزمایش آنرا نیز به عهده داشته است. شرکت Intermagnetics General Corporation ( IGC )  در آمریکا، سازنده هادیها و کابلهای ابررسانا می باشد و در این پروژه مسئول طراحی و ساخت هادیهای ابررسانا، سیم پیچ های ترانسفورماتور و طراحی بخشی از سیستم سرمایشی بوده است.

Oak Ridge National Laboratory ( ORNL ) که یک مؤسسه تحقیقاتی می باشد مسئول طراحی و ساخت ساپورت سیم پیچها و زیرسیستم های سرمایشی می باشد.

شرکت برق Rochester Gas and Electric Corporation ( RG&E )  حمایتهای مالی و اقتصادی این پروژه را به عهده داشته و مشاوره این طرح توسط مشاوران بین المللی   Electric Power Engineering Department در RPI انجام شد.

دکتر Christine Platt از دپارتمان انرژی آمریکا بر اهمیت این پدیده اذعان می نماید و می گوید که در آمریکا تلفات انرژی الکتریکی تولید شده در حدود 8 درصد می باشد که ترانسفورماتورها نیمی از این تلفات را تولید می کنند و با استفاده از مواد ابررسانا و تولیدات آن این رقم نصف خواهد شد که در نتیجه منجر به صرفه جویی صدها میلیون دلار درسال خواهد شد.

 *  High  Temperature  Supercoductor   

منبع : شرکت Waukesha Electric 

آدرس : http://www.waukeshaelectric.com 

 

افزایش کیفیت توان توسط نسل جدید ترانسفورماتورها

کنسورسیوم آنالیزسیستم های انرژی (ESAC[1][1]) متشکل ازدانشگاه های پوردو، میسوری، ویسکانسین،  ناوی و شرکت ABB باریاست دانشگاه پوردو ودانشگاه میسوری تصمیم دارند یک گام اساسی درجهت جانشین نمودن فناوری که درطی یکصدسال گذشته برترانسفورماتورهای غوطه وردر روغن حاکم بوده است بردارند.

این ترانسفورماتورهای جدید بر اساس فناوری نیمه هادیها طراحی می شوند . بدین معنا که عناصر نیمه هادی نظیر ترانزیستورهاو مدارات مجتمع ( آی سی ها ) جانشین سیم پیچ های مسی وهسته های آهن سنگین وزن در ترانسفورماتورهای معمولی می شوند. پروژه فوق تحت نظر اداره مرکزی شرکت ABB  واقع در شهر زوریخ  درسوئیس انجام میگیرد. اخیرا"پروفسور اسکات سادهاف (Scott Sudhoff ) از دانشگاه پوردو مقاله ای در زمینه احتمال جانشین شدن ترانسفورماتورهای نیمه هادی بجای ترانسفورماتورهای معمولی طی دهه آینده، انتشار داده است .

ترانسفورماتورهای توزیع عنصر اساسی شبکه های قدرت هستند ، آنها ولتاژ خطوط فشار قوی را به ولتاژ  2 2 0V مصرف کننده تبدیل میکنند، که خروجی یک ترانسفورماتور چندین منزل مسکونی را تغذیه میکند .

مزیت اصلی ترانسفورماتورهای نیمه هادی ، افزایش کیفیت انرژی الکتریکی خروجی آنهاست . این مزیت خصوصا" در نواحی که کیفیت انرژی الکتریکی بشدت مورد نظر مصرف کنندگان است اهمیت می یابد .

بارهای مجاور میتوانند مستقیما" روی کیفیت انرژی الکتریکی همدیگر تأ ثیر بگذارند. یک بار سنگین در آپارتمان همسایه (نظیر سوئیچ کردن آسانسور) سبب افت ولتاژخط تغذیه کننده آسانسورمیشود لذا کلیه مصرف کنندگانی که به این خط متصل میشوند دچار افت ولتاژ میشوند و بنابراین نور لامپ ها ، سرعت و گشتاور موتورها (نظیر موتورهای یخچال و….) کاهش میابد و سبب سوختن برخی از این وسائل گردد .

ترانسفورماتورهای نیمه هادی می تواند تمامی مسائل مربوط به کاهش کیفیت انرژی الکتریکی را براحتی حل نمایند . آنها همچنین جریان موثر مورد نیاز برای تغذیه وسائلی نظیر ماشینهای الکتریکی را کاهش داده در نتیجه تلفات خطوط شبکه کاهش می یابد. همچنین ، در این نوع ترانسفورماتورها تلفات ثابت هسته ترانسفورماتورهای معمولی که بصورت شبانه روزی مصرف می شوند بطور قابل ملاحظه ای کاهش می یابد که این امر سبب افزایش راندمان آنها می گردد. ضمن اینکه آلودگی زیست محیطی ناشی از نشت روغن ترانسفورماتورهای معمولی را نیز ندارند .

نکته دیگربرای مقایسه دوترانسفورماتوراینست که هزینه موادمصرفی نظیرمس وآهن هسته درترانسفورماتور معمولی تقریبا"ثابت است لیکن قیمت قطعات نیمه هادی بسرعت درحال کاهش است .

منبع : دانشگاه Purdue                                                                                   

آدرس : http://www.news.uns.purdue.edu

روشی جدید برای آشکارسازی گازهای ترانسفورماتورها با استفاده از امواج صوتی

خلاصه

ترانسفورماتورهای قدرت بزرگترین بخش سرمایه گذاری را در پستهای انتقال و توزیع تشکیل می دهند . پیامد سود اقتصادی ناشی از خارج شدن یک ترانسفورماتور از شبکه ، می تواند یک زیان چند میلیون دلاری باشد . بالعکس ، راه اندازی بموقع یک ترانسفورماتور معیوب معمولا می تواند از این زیان عظیم جلوگیری کند . شرایط خطا در یک ترانسفورماتور قدرت می تواند به طرق مختلف آشکارسازی شود . یک روش بر اساس آشکارسازی محصولات ناشی از تنزل کیفیت روغن عایقی ، که معمولا گازهای محلول در آن هستند ، می باشد . این گازها در نتیجه تلفات غیرعادی در داخل ترانسفورماتور تولید می شوند . انرژی گرمائی آزاد شده بواسطه خطاهایی از قبیل اضافه دما ، تخلیه جزئی و وقوع قوس الکتریکی ، غالبا برای تولید حباب های گاز کافی است . بعلاوه ، شرایط رطوبت بالا و اضافه بارهای ناگهانی می تواند باعث تشکیل حبابهای بخار آب  شود که از عایق های سیم پیچ آزاد می شوند . هنگامی که بکمک نتایج تحلیل آزمایش گازهای محلول در روغن ( DGA [2][1]) ، مشخص گردید که یک ترانسفورماتور گاز تولید می کند ، بیشتر شرکتهای دارنده ترانسفورماتور ، برای اینکه بفهمند که درون ترانسفورماتور چه می گذرد تا بدینوسیله از وقوع یک خرابی فاجعه انگیز جلوگیری نمایند ، برنامه ای جهت آزمایشهای مرتب با فاصله زمانی کمتر ، به مورد اجرا می گذارند که بشکل هفتگی و یا حتی روزانه انجام می شود . کسانی که تاکنون درصدد تفسیر نتایج عددی حاصل از این آزمون ها برآمده اند، احتمالا با این نکته موافقند که این کار یکی از مشکلترین تجزیه تحلیل هاست و در اغلب اوقات نیز نتیجه بخش نیست. معمولا اطلاعات اضافی زیادی، در کنار اخذ مشورت از افراد خبره در امر ترانسفورماتور، مورد نیاز است تا بتوان در این مورد تصمیم گیری کرد. در حال حاضر روشی برای انجام این تجزیه تحلیل در دسترس نیست.

v    آشکار سازی امواج صوتی حاصله از وقوع تخلیه جزئی در ترانسفورماتور نیز یک روش مشهور است که تجهیزات مورد نیاز آن در دسترس می باشد. وانگهی این امر روشن شده است که حتی وقتی در ترانسفورماتور تخلیه جزئی وجود ندارد، باز امواج صوتی از آن منتشر می گردد و نیز مشخص شده است که انتشار این امواج نتیجه تشکیل حباب های گاز است . لذا تجزیه و تحلیل این علائم برای تعداد قابل ملاحظه ای از ترانسفورماتورها، می تواند به یک روش تشخیص جدید برای آشکارسازی ، جایابی و تعیین مشخصات نقاط مولد گاز منجر شود. برای این منظور باید روشهایی برای آشکارسازی صوت، توسعه داده شود و پایگاه اطلاعاتی لازم برای شناسایی منابع مختلف تولید گاز و میزان جدی بودن آنها ایجاد گردد. هدف نهایی از این کار، ارائه یک روش آزمایش و الگوریتم ارزیابی نتایج آن است تا بتوان معیارهایی را برای این مسئله پیدا نمود .

این پروژه مشتمل بر دو مرحله است . در مرحله اول ، مفاهیم مربوط به این روش ارائه می شود و در مرحله دوم اطلاعات مربوط به تولید گاز در ترانسفورماتورها جمع آوری می گردد .

مرحله اول : میزان مؤثر بودن استفاده از امواج صوتی در آشکارسازی منابع تولید گاز نمایانده می شود . در این رابطه یک کار مقدماتی بر روی تجهیزات سیکل خنک کننده مؤسسه پلی تکنیک رنسلر (  RPI ) انجام خواهد شد . شرایط خطا شبیه سازی خواهد شد تا تغییرات میزان گاز تولید شده بوسیله اضافه دمای هادی، تخلیه جزئی و وقوع قوس الکتریکی را را بازسازی کند . اعضای تیم مؤسسه PAC ، آزمایش اندازه گیری تشعشعات صوتی را با استفاده از جدیدترین لوازم اندازه گیری ، بر روی سیکل خنک کننده انجام خواهند داد . مقدار و نوع گازهای تولیدی ، بوسیله اندازه گیری های ON  line  و off line ، از طریق اندازه گیری گاز موجود در روغن و نیز گاز ایجاد شده در فضای بالای منبع انبساط سیکل ، مشخص خواهد شد . این آزمایش ها به نحوی انجام می شوند که هر دو نوع تحولات گذرا و دینامیک موجود در گاز را نشان دهند . نمونه گازهای تولید شده ، در تمامی بازه دمایی و نرخ های مختلف عبور جریان روغن ، گرفته خواهد شد . این اطلاعات بوسیله RPI و PAC مورد تجزیه و تحلیل قرار خواهند گرفت .

مرحله دوم : پس از تکمیل موفقیت آمیز مرحله یکم ، مرحله دوم پروژه آغاز می شود . در این مرحله ، شش شرکت برق توسط EPRI و PAC تعیین می شوند و ترانسفورماتورهایی که در این شرکتها گاز تولید می کنند ، همراه با ترانسفورماتورهای مشابه آنها که گاز ایجاد نمی نمایند مورد بررسی قرار خواهند گرفت . در این مرحله حداقل 30 ترانسفورماتور مولد گاز جهت ایجاد پایگاه اطلاعاتی لازم مورد مطالعه قرار خواهند گرفت . بر روی هر ترانسفورماتور ، حداقل بمدت 24 ساعت آزمایش خواهد شد. تجهیزات بنحوی تنظیم می شوند که انرژی صوتی با فرکانس قدرت و نیز پمپ ها ، فن ها ، تب و بار در نظر گرفته شوند. این اطلاعات با استفاده از تجزیه تحلیل گرافیک ، تجزیه تحلیل های آماری و شبکه های عصبی مورد ارزیابی قرار خواهد گرفت تا اغتشاشات ناشی از نویزهای موجود در محیط و اعوجاجات علائم ایجاد شده در اثر ساختمان داخلی ترانسفورماتور، شناسایی و حذف شوند. آنگاه با استفاده از افراد خبره انتخاب شده توسط EPRI ، این اطلاعات به طراحی و مشخصات خاص هر ترانسفورماتور مرتبط خواهد شد. هرگاه که شرکت برق ذیربط، تصمیم به باز کردن محفظه ترانسفورماتور بگیرد، اطلاعات فوق الذکر با یافته های فیزیکی حاصله از بازبینی مقایسه خواهند شد. یکی از اهداف کار آنستکه بتوانیم توصیه ای برای اقدامات لازم بنمائیم که این توصیه در قالب موارد ذیل دسته بندی می شود :

الف ادامه مشاهده                                                      ب انجام DGA با دفعات بیشتر

ج مراقبت on line  یا روزانه                                                      د اقدام فوری

دستاوردهای این پروژه مشتمل بر موارد زیر هستند :

·    یک گزارش به شرکت ذینفع در رابطه با منابع تولید گاز در ترانسفورماتورهای ذیربط

·    یک گزارش حاوی جزئیات آزمایش و روشهای آن، پایگاه داده های مربوط به نتایج آزمایشهای میدانی و تجزیه و تحلیل داده ها.

·    توسعه یک پایگاه اطلاعاتی اولیه برای مرتبط ساختن الگوهای انتشار علائم صوتی به نوع خطا و میزان جدی بودن آن

·    تهیه برنامه ای برای غنی کردن نرم افزار محل یابی بر مبنای داده های تجزیه و تحلیل شده و پایگاه داده ها.

·    تهیه یک برنامه برای ایجاد یک ابزار تجاری و ایجاد پروسه آزمایش براساس ارزیابی های میدانی

 

شرکت کنندگان در این برنامه، این امتیاز را خواهند داشت که آزمایش های اضافی برروی ترانسفورماتورهای مولد گاز خود داشته باشند و این آزمایش ها توسط خبرگان ترانسفورماتور مورد تجزیه و تحلیل قرار گیرد و در خریدهای آینده خدمات و لوازم نیز تحقیقات قابل ملاحظه ای خواهند داشت.

 

منبع :EPRI           

آدرس: http://www.epri.com          

 

 در جهان  HTS فن آوری ترانسفورماتورهای

پس از کشف مواد HTS در سال 1986 ، تحقیقات جهت امکان عملی ساخت ترانسفورماتورهای HTS شروع شد. طبق برآورد های اولیه، در صورت استفاده از این ترانسفورماتورها ، بیش از 35% نسبت به ترانسفورماتورهای معمولی، صرفه جویی می شد. اما با توجه به مشخصات ناشناخته تلفات ac ، این مقدار بطور دقیق قابل محاسبه نبود. در تحقیقی که در سال 1993 در آمریکا انجام شد، معلوم شد که هزینه لازم در طول عمر مفید ترانسفورماتور HTS بطور متوسط ، نصف هزینه ترانسفورماتور معمولی است . بدین ترتیب در صورت استفاده از این نوع ترانسفورماتورها در ایالات متحده تا سال 2030 مبلغ 25 میلیارد دلار صرفه جویی خواهد شد. تحقیقات در سال 1994 نشانداد در صورت استفاده از ترانسفورماتورهای HTS در محدوده قدرت تا 500 MVA ، صرفه جوئی در هزینه 70% (نسبت به ترانسفورماتورهای معمولی ) و کاهش وزن آنها 40% خواهد بود .

در ژاپن بدلیل تراکم بالای جمعیت ، یکی از فواید اساسی ترانسفورماتورهای HTS ، کاهش قابل ملاحظه وزن و حجم آنهاست . همانطوریکه کابلهــــــای HTS  قابلیت انتقال بیشتر توان را از طریق کانالهای موجود دارا هستند، ترانسفورماتورهای HTS نیز می توانند در فضای موجود، قدرت بیشتری نسبت به ترانسفورماتورهای معمولی تامین کنند. بهمین دلیل در ژاپن مزیت کوچک شدن فضای اشغال شده و وزن ترانسفورماتورها بعنوان مهمترین مزیت این نوع ترانسفورماتورها مطرح است . در اروپا ، علاقه به استفاده از ترانسفورماتورهای کوچک HTS در قطارهای سریع السیر ، رشد روز افزونی یافته است . پتانسیل وکشش بازار جهانی برای ترانسفورماتورهای ابررسانا بیش از 1 میلیارد دلار میباشد .

بررسی آمارهای موجود نشان میدهد که در ایالات متحده بیش از90% ترانسفورماتورها، قدرتی در محدوده 10 تا 100  MVA داشته وقیمت مجموع آنها، برابر با 70% قیمت کل ترانسهای موجود درامریکا میباشد (جدول 1) . درحال حاضرسه پروژه H TS درایالات متحده ، اروپا وژاپن درحال انجام هستند.جدول (2) ترکیب تیمهای تحقیقاتی،ظرفیت ترانسفورماتورهای تحت توسعه و مواد HTS مورد استفاده توسط هریک ازگروهها را نشان میدهد.

     جدول ( 1 ) - بازار ترانسفورماتورهای                                         جدول ( 2 ) -  پروژه های ترانسفورماتور

قدرت در سالهای 1995 و 1996                                                   H TS در جهان

 

در ایالات متحده این تحقیقات توسط شرکت IGC  و با همکاری لابراتور ملی Oak Ridge انجام میشود. IGC باحمایتهای مالی Waukesha Electric و Rochester Gas & Electric ، طرح یک ترانسفورماتور HTS 1000KVA ارائه کرده و در حال ساخت آن است . دراین ترانسفورماتورازنوارهای نقره باپوشش HTS استفاده شده است .استفاده ازسیستم BSCCO-2212 عملکرد پایدارسیستم را تا دمای 30K عملی میسازد . درصورت استفاده از هادیهایBSCCO-2223 ، میتوان دمای عملکرد ترانسفورماتور را به 77K رساند . در این وضعیت بالا بودن قیمت BSCCO-2223 و ضعیفتر شدن عملکرد ترانسفورماتور (بعلت بالا رفتن دما) را نیز باید در نظر گرفت . گرچه نمونه اولیه ترانسفورماتور مذکور برای قدرت 1MVA ارائه گردید ، اما هدف نهائی مؤسسه IGC و Waukesha ساخت یک ترانسفورماتور 30MVA ، 60Hz,138/13.8KV و امپدانس 10% با اتصال مثلث – ستاره است .

از طرف دیگر شرکت ABB  با همکاری Electricite de France ، با استفاده از نوارهای مولتی فیلامان BSCCO-2223 ساخت ASC ، یک ترانسفوماتور 50HZ .13.72/0.42KV , 630KVA و امپدانس 4.6% با اتصال مثلث – ستاره ساخته است .

 

فن آوری ترانسفورماتورهای HTS در ژاپن

پس از طراحی و ساخت یک ترانسفورماتور 220 KVA , LTS توسط شرکت Alsthom و عملکرد موفق آن تحت بار70KW ، در ژاپن ترانسفورماتورهای LTS کوچکتر با قدرتهای10KVA تا 100KVA فراوانی ساخته شد.پس از آن ترانسهای با قدرت بیشتر توسط دانشگاه Nagoya با همکاری Takaoka (100 KVA) وkansai Electric  با همکاری Mitsubishi (2000 KVA با استفاده از Nb3Sn) ، دانشگاه Osaka با همکاری Toshiba (40 KVA) و دانشگاه Kyushu با همکاری Toshiba  (1000 KVA) ساخته و تحت آزمایش قرار گرفت .

هادیهای H TS در دمای بالاتری ( نسبت به هادی LTS ) کار می کنند و اگرچه تلفات آنها بیشتر است اما با توجه به کاهش هزینه خنک سازی هادی این امر قابل قبول می باشد .

در ایالات متحده و اروپا شرکتهای برق سهم بزرگی در توسعه برنامه های ترانسفورماتورهای ابررسانا برعهده دارند اما در ژاپن ، قسمت عمده کار بر عهده مراکز صنعتی و دانشگاهی بوده و حمایت آشکاری از سوی شرکت های برق دیده نمی شود. ژاپنیها که در زمینه ساخت ترانسفورماتورهای LTS فعالیت گسترده ای داشته اند، گزارش چندانی در مورد ترانسفورماتورهای H TS ارائه نکرده اند . در سال 1996 در ژاپن جزئیاتی از برنامه ساخت تـــــرانسفورمـــــاتور HTS 500 KVA تحــــت حمـــایت شـــرکتهـــای  Fuji Electricو SEC (Sumitomo Electric) ، ارائه گردید . احتمالاً تامین نوارهای HTS بر عهده Sumitomo و طراحی و ساخت ترانسفورماتور به عهده Fuji Electric و دانشگاه Kyushu است. در جدول ( 3 ) مشخصات نوارهای HTS و توالیهای سیم پیچی آمده است .

 

 

جدول ( 3 ) - مشخصات نوارهای HTS و توالیهای سیم پیچی در ترانسفورماتور HTS ساخت SEC- Fuji و دانشگاه Kyushu

 

پارامترهای طراحی این ترانسفورماتور 500 KVA (شکل 1) در جدول (4 ) آمده است . در این جدول برای قطر سیم پیچ دو مقدار داده شده است که این دو مقدار مربوط به لایه های دوگانه سیم پیچند . علت      لایه – لایه سازی سیم پیچها کاهش اثر میدان خودی هادی است .

تلفات با استفاده از روش کالریمتری ،  115 Wتخمین زده شده است و شامل تلفات ac سیم پیچها و حرارت نشتی از Cryostat و هادیهای جریانی می باشد . اهداف بعدی تیم SEC-Fuji و دانشگاه Kyushu تغییر سیستم سرمایش از حمام نیتروژن مایع به سیستم جریان دائم نیتروژن Supercooled  است . هدف از این تغییرات ، افزایش ظرفیت انتقال جریان سیم پیچها و استقامت عایقی سیستم عایق است .

                شکل ( 1 ) ترانسفورماتور HTS ساخت                                          جدول (4 ) - پارامترهای طراحی ترانسفورماتور (Fuji)       

SEC – Fuji                      و دانشگاه Kyushu

 

منبع :              مؤسسه Loyola

آدرس : http://itri.loyola.edu        

 

ترانسفورماتورهای ابررسانا

ترانسفورماتورها یکی از مهمترین عناصر شبکه های انتقال و توزیع هستند . در ترانسفورماتورها انرژی الکتریکی در مس سیم پیچها ، آهن هسته ، تانک ترانس و سازه های نگهدارنده بصورت حرارت تلف می شود. حتی در زمانیکه ترانسفورماتور بدون بار است ، در هسته تلفات بی باری (NLL) بوجود می آید. در نتیجه مطالعات و بررسیهای انجام شده ، در 50 ساله اخیر محققان موفق شده اند با صرف هزینه ای دو برابر برای هسته ، تلفات بی باری را به یک سوم کاهش دهند. اخیراً با جایگزینی فلزات بیشکل و غیر بلوری (Amorphous) بجای آهن سیلیکونی درهسته ترانسفورماتورهای توزیع با قدرت نامی کوچکتر از 100 KVA ، تلفات بی باری باز هم کاهش یافته است . این کار هنوز در مورد ترانسفورماتورهای بزرگ با قدرت نامی بزرگتر از 500KVA انجام نشده است . اگرچه برای هر ترانسفورماتور ، 1 درصد توان نامی آن بعنــوان  توان تلفـاتی در نظر گرفتـه می شود، اما باید توجه داشت که آزاد سازی بخش کوچکی از این تلفات در طول عمر ترانسفورماتور صرفه جوئی کلانی به همراه خواهد داشت . در ترانسفورماتورهای قدرت معمول ، تقریباً 80% از کل تلفات ، مربوط به تلفات بارداری ترانسفورماتور (LL) است که از این 80% ، سهم تلفات اهمی سیم پیچها 80 % بوده و 20 % دیگر مربوط به تلفات ناشی از جریانهای فوکو و شارهای پراکنده است . لذا تلاشهای زیادی جهت کاهش تلفات بارداری صورت می گیرد. در ابررساناها بعلت عدم وجود مقاومت اهمی در برابر جریان d c تلفات اهمی برابر با صفر است . لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات کل ترانسفورماتور، کاهش قابل ملاحظه ای خواهد یافت. در مقابل جریان ac ، در ابر رساناها تلفاتی از نوع تلفات فوکو رخ می دهد. گرمای بوجود آمده از این تلفات باید با استفاده از سیستم های خنک کننده دفع گردد.بررسیهای بعمل آمده حاکی از آن است که ترانسفورماتورهای ابررسانا با قدرت 10 MVA و بالاتر عملکرد نسبتا بهتری داشته و نسبت به ترانسفورماتورهای معمولی قیمت پایینتری خواهند داشت .

تلاشهایی که جهت توسعه ترانسفورماتورهای ابررسانا انجام می گیرد صرفاً بخاطر مسایل اقتصادی و کاهش هزینه کل نیست. یکی دیگر از دلایل طرح این مبحث آنست که در مراکز پر تراکم شهری، رشد مصرف 2 درصدی (سالیانه ) به معنی نیاز به ارتقاء ظرفیت سیستم های موجود است . از طرفی بسیاری ازپستهای توزیع بصورت سرپوشیده (Indoor) بوده و در کنار ساختمانها نصب شده اند. در این نوع پست ها همانند دیگر پستهای توزیع از ترانسهای روغنی استفاده میشود که استفاده از روغن مشکلات و خطرات زیست محیطی و ایمنی مربوط به خود را دارد. در حالیکه در ترانسفورماتورهای ابررسانا، ماده خنک کننده نیتروژن است که خطری برای افراد و موجودات زنده نداشته ، بعلاوه ، خطر آتش سوزی نیز وجود ندارد. بهمین لحاظ خنک کننده مورد استفاده در ترانسفورماتورهای ابررسانا به هیچ عنوان قابل مقایسه با روغنهای قابل اشتعال و مواد شیمیایی همچون PCB نیست .

توجه جدی به ترانسفورماتورهای ابررسانا از زمان شناخت ابررساناهای دمای پایین LTS ( اعم از Nb-Ti و Nb3-Sn ) از اوایل دهه 1960 ، آغاز شد. مطالعاتی که در آن زمان بر روی این ترانسفورماتورها انجام شد ، نشان داد که جهت بهره برداری از این ترانسفورماتورها، باید آنها را در دمای 4 .2K نگه داشت که انجام چنین کاری اقتصادی نیست . بهمین دلیل گامها بسوی کشف موادی با قابلیت ابررسانایی در دماهای بالاتر ، برداشته شد. در اواسط دهه 1970 ، شرکت Westing House ، طرح یک ترانسفورماتور نیروگاهی 550/22kv , 1000MVA را مورد مطالعه  قرار داد و به این نتیجه رسید که مشکلاتی از قبیل انتقال جریان ، عملکرد فوق جریان (Overcurrent) و حفاظت همچنان وجود خواهند داشت .

از سال 1980 ، توسعه ترانسفورماتورهای LTS توسط شرکت های GEC-Alsthom , ABB ، در اروپا و چند شرکت صنعتی و مرکز دانشگاهی در ژاپن، مورد پیگیری قرار گرفت . پیشرفت های بعمل آمده در تولید هادیهای طویل Nb-Ti و مواد با مقاومت بالا (Cu-Ni) بر کاهش تلفات ac تاثیر زیادی داشته است . مساله عملی بودن کاهش وزن و افزایش راندمان نیز بر روی ترانسفورماتورهای با قدرتهای کمتر از 100KVA (تکفاز 80KVA Alsthom) ، (Toshiba)30KVA و سه فاز 40KVA (دانشگاه Osaka) مورد بررسی قرار گرفت . هم چنین ترانسفورماتورهای بزرگتری نیز ساخته شده و آزمایشهای مربوطه را با موفقیت پشت سر گذاشتند. در یک ترانسفورماتور تکفاز 330KVA ساخت ABB پیش بینی های لازم برای محدود سازی جریان خطا و حفاظت در برابر یخ زدگی در نظر گرفته شد. شرکت برق Kansai Electric نیز گزارشی از ترانسفورماتور LTS با هادی Nb3Sn با قدرت 2000 KVA ارائه نموده است .

 

منبع :         مؤسسه Loyola

آدرس : http://itri.loyola.edu          

افزایش کارآیی کنتاکتهای تپ چنجرهای On-Load به کمک کنتاکتهای جدید ELR

حرکت به سمت خصوصی سازی در صنعت برق تولیدکنندگان برق را به استفاده بهینه و بسیار کارا از تجهیزات موجودشان ترغیب می کند . لذا در راستای این سیاست در حال حاضر توجه ویژه ای به کیفیت تجهیزات مورد استفاده و بهبود عملکرد و افزایش فاصله زمانی تعمیر و نگهداری توسط تولیدکنندگان مبذول می شود .

از آنجا که ترانسفورماتورهای قدرت یکی از گرانترین تجهیزات در صنایع برق می باشند ، لذا تولیدکنندگان برای کاهش هزینه های سرمایه گذاری سعی می کنند ترانسفورماتورهای قدرت خود را در وضعیت اضافه بار نسبت به مقادیر نامی آن قرار دهند. این اضافه بار باعث افزایش درجه حرارت ترانسفورماتور و سایر بخشهایی که جریان از آن عبور میکند می شوند . یکی از حساسترین قسمتها کنتاکت های تپ چنجر های زیر بار می باشند که با افزایش درجه حرارت ، تخریب و به حالت زغالی درمی آیند .

برنامه های وسیع تحقیقاتی برای رفع این مشکل اجرا شده است و آخرین تکنولوژی که در مرحله آزمایش و پیاده سازی عملی بسیار موفق بوده است ، روشی است که توسط نیکولز برای شرکت گاز و برق پاسیفیک انجام شده است .

در بررسیهای اولیه ای که نیکولز بر روی کنتاکتهای سوخته انجام داده است این نتیجه را داده است که طرح جدید کنتاکت ها باید دارای هدایت الکتریکی و حرارتی بالاتر ، مقاومت بالاتری در برابر جوش خوردن و در برابر سائیدگی مکانیکی داشته باشد . در این طراحی نیکولز در نظر داشت که طرح مورد نظر قابل انطباق برای انواع تپ چنجرها باشد .

برای اینکار طرح استفاده از کنتاکت های با پوشش نقره بالا و ایجاد کنتاکت هایی با مقاومت خیلی پائین ELR ارائه شد. برای ایجاد این روکش ابتدا با استفاده از سلف فرکانس بالا این آلیاژ نقره ای بر روی کنتاکت جوش خورده است و سپس مقادیر اضافی آن ماشینکاری شده است . این سطح نقره ای باعث ایجاد مقاومت کم و تماس استاتیکی بهتری برای کنتاکت های کلید می شود .

این طرح در پروژه های مختلفی مورد استفاده واقع شده و باعث جلوگیری از تخریب کنتاکتها و عدم نیاز به تعمیر و نگهداری در دوره های زمانی کوتاه شده است .

 

منبع : High Voltage Supply

آدرس : http://www.highvoltagesupply.com

 ترانسفورماتور 1000 کیلوولت

با روند رو به رشد مصرف انرژی الکتریکی در قرن بیست و یکم ، شرکت برق توکیو (TEPCO) تصمیم به توسعه شبکه انتقال 1000 کیلوولت داشته و لذا در حال حاضر مشغول آزمایش های میدانی تجهیزات 1000 کیلوولت در پست (شین هارونا) می باشد. در این راستا برای تامین تجهیزات مورد نیاز سیستم قدرت 1000 کیلوولت با همکاری شرکت میتسوبیشی الکتریک ( کارخانه آکو ) یک اتو ترانسفورماتور تکفاز نوع shell یا زرهی با تنظیم کننده ولتاژ تحت بار (LVR) طراحی و ساخته شده که در متن حاضر به معرفی مشخصات ، ساختمان، آزمایش ها و چگونگی حمل و نقل آن پرداخته می شود. در حالت سه فاز ظرفیت سیم پیچ های اولیه و ثانویه 3000 مگاولت آمپر و ظرفیت سیم پیچ ثانویه آن دارای ظرفیت 1200 مگاولت آمپر می باشد که برای تامین بار راکتیو مورد نیاز خطوط 1000 کیلوولت در نظر گرفته شده است . برای اینکه در حین اتصال کوتاه با جریان های شدیدی درگیر نباشیم و تجهیزات منصوبه غیر عادی نباشند به جای اینکه همانند ترانسفورماتور 500 کیلوولت سمت ثالثیه را 63 کیلوولت انتخاب کنیم ، از سطح ولتاژ 147 کیلوولت استفاده می کنیم. برای این ترانس امپدانس درصد، 18 درصد انتخاب شده است، که از یک طرف ماکزیمم پایداری را برای شبکه ایجاد نماید و از طرف دیگر جریان اتصال کوتاه محدود میشود و در نهایت یک طرح اقتصادی برای ترانسفورماتور انتخاب شده است . این ترانسفورماتور دارای 27 تپ در بازه های ولتاژ خط 6/1136 کیلوولت تا 6/986 کیلوولت بوده و برای بررسی قدرت عایقی آن در برابر اضافه ولتاژهای گذرا، آزمایش های ولتاژ ایستادگی در فرکانس قدرت با شرایط و آزمایش ولتاژ ایستادگی(در اولیه 1950 کیلوولت و در ثانویه 1300 کیلوولت) انجام شده است. در آزمایشهای بالا E ولتاژ فازی معادل     می باشد. برای رعایت شرایط زیست محیطی سطح صدای قابل قبول 65 دسی بل برای آن در نظر گرفته شده که برای کنترل این سطح از صفحات چند صدای فلزی در ترانسفورماتور استفاده شده است خنک سازی این ترانسفورماتور با روغن و هوای تحت فشار انجام می گیرد. از آنجا که هر ترانسفورماتور 1000 کیلوولت هم از نظر ولتاژ و هم از نظر ظرفیت معادل دو برابر ترانسفورماتور 500 کیلوولت میباشد و از طرفی بیشتر سیستم های حمل و نقل ریلی و دریائی و یا فضایی در حد یک ترانس 500 کیلوولت میباشند ، لذا این ترانس به دو واحد که هر واحد ظرفیت و حجم یک ترانس 500 کیلوولت را دارد تقسیم می شود. در ترانس تهیه شده هر واحد در حالت تکفاز ظرفیت 3/1500 مگاولت آمپر و هر کدام تنظیم کننده ولتاژ جداگانه داشته و در محل نصب این دو واحد از طریق یک داکت T شکل با بوشینگ روغن گاز با هم موازی می شوند. برای کاهش عایق ها و در نتیجه کاهش حجم ترانسفورماتور طراحی سیم پیچی و عایق ها باید به گونه ای باشد که شدت میدان الکتریکی تا حد ممکن کاهش یافته و درجه خلوص روغن ترانس نیز تا حد ممکن بالا باشد. برای بارگیری در کشتی، متعلقات هر ترانسفورمرز نظیر واحدهای خنک کنندگی و سایر بخش های آن جدا شده و در فضایی با طول 8 متر ، عرض 3 متر و ارتفاع 4 متر قرار داده می شوند. عموما بارگیری به گونه ای است که برای مسافت های طولانی در حد 1000 کیلومتر هیچگونه آسیبی به واحد نرسد.

در محل نصب ترانسفورماتور در پست، هر دو واحد جداگانه برروی یک قاب فلزی برروی زمین بسته شده و سپس از طریق داکت T شکل به همدیگر وصل می شوند تا یک ترانس تکفاز 1000 کیلوولت را تشکیل دهند. سپس این ترانس تکفاز تحت آزمایش کارآگاهی نسبت تبدیل ، مقاومت ، امپدانس سیم پیچها و مقاومت عایقی قرار می گیرد. اولیه و ثانویه و ثالثیه ترانس تکفاز 1000 کیلوولت از طریق اتصال گازی ( SF6 ) متصل می گردند. سپس با استفاده از سه ترانس تکفاز ، بانک ترانس های سه فازی ایجاد می کنند. در نهایت این ترانس سه فاز تحت آزمایش های تضمین سیستم خنک کنندگی ، آزمایش جریان هجومی، تعیین جریان نشتی قرار می گیرند. این آزمایشات برای یک دوره دو ساله انجام می شود.

منبع : Mitsubishi

آدرس : http://www.mitsubishielectric.com

 کاربرد الکترونیک قدرت در تپ چنجر ترانسفورماتورهای توزیع

یکی از حوزه های استفاده از الکترونیک قدرت در صنعت برق، تپ چنجر ترانسفورماتورها می باشد . تپ الکترونیکی برخلاف نوع مکانیکی ، کنترل دائم و تنظیم جریان ولتاژ ترانسفورماتور را ممکن میسازد . بدین منظور ، بایستی امکان تغییر تپ در شرایط بار کامل ترانس فراهم گردد . مهمترین مسئله در طراحی مبدل قدرت برای این منظور، اندوکتانس سرگردان تپ های سوئیچ شده می باشد . اگر عمل تغییر تپ بین دو تپ مختلف در فرکانس بالا صورت بگیرد ، امکان تنظیم دائمی ولتاژ ثانویه در بار کامل ترانس وجود دارد . کل سیستم در شکل زیر نشان داده شده است :

 

شکل ( 1 ) - مبدل قدرت ، اتصالی بین شبکه قدرت و ترانس

طراحی مبدل قدرت

به دلایل زیر از لحاظ فنی، امکان استفاده از یک مبدل قدرت معمول تجاری سه فاز حتی در سیستم توزیع وجود ندارد :

1.                                            ولتاژ فاز شبکه توزیع (در محدوده تا 20 کیلوولت) از حد ظرفیت بلوکه کردن نیمه هادیهای قدرت معمول ، بیشتر است .

2.                                            کل سیستم مذکور ، شامل مبدل قدرت ، بایستی در شرایط وقوع اتصال کوتاه ترانس در مدار باقی بمانند ( مثلا برای جریان نامی 22 آمپر اولیه ، جریان اتصال کوتاه تا 550 آمپر را تحمل کند) .

3.                                            با برقدار کردن ترانس، جریانی در حدود چهار برابر جریان نامی برقرار میشود که در نتیجه ثانویه ترانس، تا لحظاتی قادر نیست برق 400 ولت مورد نیاز دستگاههای کنترلی فوق را تامین کند .

بنابراین ، برای ساختن مبدل قدرتی که بر مشکلات فوق غلبه کند ، موارد زیر در مرحله تحقیق و بررسی قرار دارند :

1.                                            تحقیق در مورد توپولوژی و مفاهیم کنترلی (مدولاسیون) مبدل .

2.                                            مدل شبیه سازی شده از ترانس قدرت با مبدلهای قدرت برای توپولوژیهای مختلف .

3.                                            توپولوژیهای مختلف ممکن از مبدل قدرت و تکنیکهای مرتبط کنترل از طریق شبیه سازی .

4.                                            انتخاب توپولوژی بهینه از مبدل قدرت با توجه به قابلیت اطمینان سیستم ، پیچیدگی و هارمونیکها و دقت شکل موج ترانس .

5.                                            اثبات توپولوژی در نظر گرفته شده از لحاظ تجربی .

6.                                            انجام آزمون در یک آزمایشگاه ولتاژ بالا و ارزیابی نتایج با توجه هارمونیکهای شکل موج مبدل .

 

منبع : Its

آدرس : http://ee.its.tudelft.nl/EPP/ReInd_001.htm

 

 



 

 

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد